Reverse Engineering of Strong CryptoSignatures Schemes

Reverse Engineering of Strong Crypto Signatures Schemes

Data by Evilcry
Quequero
Where ones sees Qual che mo. .. eve'nt ual e comento sul the others sees
alimit tutorial :))) an opporunity

WebsSite: http://evilcry.altervista.org
E-mail: evilcry DoT gmail At com

Prepare for what you
cannot see, expectthe | |RC frequentato irc.azzurranet.org #crack-it on efnet NUP://www.reteam.
unexpected, awaiting HRET org

game waiting to see......

Difficult NewBies () Intermediate (X) Advanced (X)
Master ()

Reverse Engineering of Strong Crypto Signatures Schemes

Written by Evilcry.

Introduction ‘

This paper will have the usual classical style of a CryptoReversing Approach, what we are going to talk
about is ECC also known as Elliptic Curve Cryptography. After atheorial study we will fly to the most
common Secured Software Applications with atouch of Hardware Securityware.

Tools used ‘

. IDA
. Ollydbg
« A good background of math 'n Cryptography

Index ‘

file:///ICJ/ECC/StrongCrypto.html (1 of 29)7/31/2007 9:35:26 PM

http://www.reteam.org/
http://www.reteam.org/

Reverse Engineering of Strong CryptoSignatures Schemes

Basic Intro

Introduction To Elliptic Curve Cryptography

Basic Math Background - Group Theory

Basic Math Background - Finite Field Arithmetic
Generalized Discrete Logarithm Problem

What Elliptic Curves are

Elliptic Curvesin Cryptography

Elliptic Curve Arithmetic

Pratical Elliptic Curves Operations Sample

Foundamental Features of EC, and pratical ECC generation
. Elliptic Curves Cryptographic Applications

Basic ECC Architecture Considerations

The Elliptic Curve Discrete Logarithm Problem and ECC Attacks
The Elliptic Curve Digital Signature Algorithm

A Reverse Engineering Approach

ECDLP and Schoof Solving, for Security Patterns

COWoo~NU~wWNE

PR RRPR R
oSOubkwbdE

KeygenMe 10 by WiteG

Basic Intro

Why should a Reverser should study Cryptography?..many people "erroneously” have the bad "abit" to
consider these two disciplines as isolated, but as you will seein the Professional or Recreational
Reversing: the analysis of the most easy and unknown agorithm is done in the same manner, with the
same basic assumptions and concepts for the inveribility. In Cryptography we will deal with most
complex mathematical systems and with more "refined" reversing techniques but..as you will see the
Resolution Pattern will always be the same.

Today many many Professional Protections base their security upon Crypographic Algorithms of
various kinds, and also a big part of the future SSHR (Security-Software/Hardware-Research) will be
directed (verso) the realization of Complex Systems of crypthographical algorithms, mantained by
Purely Mathematical algorithms, and little by little we will need more complex Algebraic Attacks.

Actually the research is working on new Full Cryptographic Chips, Hardened USBs and other Hardware
that are built to run a specific Crypto Algorithm.

file:///ICJ/ECC/StrongCrypto.html (2 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

It's necessary to make some other distinctions when we talk about Hardware Cryptography. We have
two common systems for the "Efficient” Computation of an Algorithm:

ASIC Devices: Application Specific Integrated Circuit, that are specifically built for Maximum Risk
Applications, their power isthat the Efficiency and algorithm can't be changed after the producion.

FPGA devices. Field Programmable Gate Arrays, which contain arrays of computational elements
obtained with arestricted set of instructions. These elements are called Logical Blocks and are
connected with a set of Routing Resour ces that could be programmed.

In this last period many security studies on FPGA, revealed to us some Complex Attacks that could be
performed. I'm talking about Techniques of FPGA Exploitation but (un)fortunately thisfield is not for
al ;)

Finally..some consideration..there are many yet implemented Algos, such as: AES, RSA and ECC. The
most interesting in my opinion are the ECC, because they offer alevel of security similar to RSA with
truly little KeySizes, and thisis abig quality for Hardware devices, ECC are aso fast, and are necessary
little Certificates! (afoundamental point in mass hardware..PDA, SmartCards, Phones)

Therefore, knowing the possibilities of analysis and reversing on software, we can use the same methods
of analysisin order to work on the hardware.

I ntroduction To Elliptic Curve Cryptography

The Public Key Cryptosystems most used, are ones based on factorization (RSA) and upon the Discr ete
L ogarithm Problem (Diffie-Hellman, EIGamal, Schnorr, DES). These Algos make possible, trusted
communiations over insecure channels. There are various alternative secure communication systems,
one of theisthe Cryptography Based on Elliptic Curves or more eady ECC. This system became
Main Stream thanks to the numerous advantages and flexibility that ECC offers!. We have many
proposed Elliptic Curves for PKC, some of them based on the factorization problem, otherson DLP. It's
important to talk about the fundamental differences between the two "frameworks". Factorization is
essentially an Academical and except little KeySizes there are no big differences with RSA.

More intersting, is ECC based on DL P, because the security of these algorithms depends on the
redefinition of the classical algorithms used for common DL problems. This different implementation of
classical DLP, drive usto aredefinition of Exponentiation, that we can call Sub-Exponentiation Time,
if applied to the Resolution of Elliptical Curves. If welook at more general algorithms specifically
built for ECC, we have an Exponential Time. Sintetically, aspects of the same agorithm assumes
different terms, if referred to the "EFFICACIA" which they have on DLP or ECDLP.

The beautiful story of ECC, beginsin 1984 thanksto Hendrik L enstra, who coded afactorization

file:///ICJ/ECC/StrongCrypto.html (3 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

algorithm based on the mathematical proprieties of Elliptic Curves, caled Lenstra Elliptic Curve
Factorization. The true ECC, bornin 1985 by Neal Koblitz and Victor Miller that reimplemented the
already known algorithm upon algebrical structures as Elliptical Curve Math and Finite Fields..

Basic Math Background - Group Theory

I've decided to make an approximatively complete discussion of ECC, so in thislittle chapter i've
inserted some elements of Group Theory.

An Abelian Group (G,*) isaset G with assigned binary operation:
*=GxG->G
that has the following proprieties:

. Associativity a* (b* c) = (a* b) cfor al thea, b,cincluded in G

. ldentity Element, exists an identity element eincludedinGthata* e= e* a= afor al thea
includedin G

. Existence of Inverses, For each a existsan element b called Inverseofa, soa* b=b*a=e

. Commutativity,a*b=Db* a

There are basiclly two groups, Additive (+) and Multiplicative (*). These two distinctions come from the
fact that agroup is called additive when his identifying element ais O, whilethe inverseis -a.
Multiplicative groups are so called when the identitifying element is 1, and it'sinverseis a’\(-1). Finally
agroup is caled Finite when G is afinite set, in this case we also have an Order which pratically defines
the number of elements of G.

For example, with afixed prime number p, we can easly build afinite group of order p, Fr'! ={0,1,2,...,p-
1}, obtained from a set of integers. For the precedent observations, we can assume two kind of groups (

FH, +) in other words an additive group of modulus p with identity element equal to 0, and also a group (

FJJ* , *) where Fr'e'* denotes not-null e ements from the set that we have considered and as you can see
isaMultiplicative group of order p-1 and identity element 1.

At this point you may think that there exists a group that contains both Additive and Multiplicative

operations?..so we have only one mathematical object?..the answer isYes!! (FJJ,+) Itisasocaled
Finite Fields. Now you should know that we can define G as a M ultiplicative Finite Group of order n
and we can aso introduce new elements typical of Finite Fields as the the g element, that the most little
positive integer given from t and defined as:

gt=1

file:///ICJ/ECC/StrongCrypto.html (4 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

called Order of g, whose direct and most important consequence is to exist always and to be adivisor of
n. Another truly important property of groupsis the "chain effect”, we can indeed define a set as:

<g>={g"():0<=i<=t-1}

in other words the set of all powers of g, which (as you should understanded) is by "itself" a group or
better a SubGroup of G, and is called Cyclic SubGroup of G generated by g. For the nitation of Finite
Field, al that we have said it's true also for G writted with Additive Rules, or more precisely the order of
g isthe most little positive divisor t in n, or better:

t*q=0
and consequently:
<g>={i*g:0<=i<=t-1}

The Added notation t* g assumes the sense of element obtained by adding t copies of g, we can also
resume with only one definition: If G has ag element of order n, then G isa Cyclic Group and g will be
called Generator of G.

Finite Fields Arithmetic

Finite Field Aithmetics is the foundamental basis of each system that uses Elliptical Curves, mainly in
cryptography, the correct implementation of all algorithms over Finite Fields, is the most important step
to determine the efficiency and security of an ECC System. There are principally three kind of finite
fields:

. Prime Fields: formed by prime numbers.
. Binary Fields
. Optimal Extension of the Field

For each of these fields exists growing implementation difficulties in the sorted order that you can see.
It's obvious that it is also necessary to implement different algorithms for each kind of Field.

But all algorithms follow one common fundamental concept, the Execution of Aritmethic Operations,
INTO and BETWEEN the fields, tecnically working as Mixer/Connector or as Single Operators.

The Fields, are abstractions or better SubSets called F of the various numerical systems that we know.
Into fields are principally possible only two operations, Addition and Multiplication and they have
exactly the same properties of the Groups.

file:///ICJ/ECC/StrongCrypto.html (5 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

In other words the possible operations with Fields are four, indeeid we can add Subtraction and
Division, as derived operation types the two principal. Subtraction is defined in additivetermsas: a- b

= a+ (-b), whilethe Division is defined in terms of Multiplication, asalb= a* b (1) as? 7 Veba
(-1) inverse element, the element that respectstherelationb * b (-1)=1.

Finite Prime Fields: Arewritten as)

FJJ, for each integer a, (a MOD p) we will have aremainder r between O and p, the inverse operation,
necessary to find r is called M odular Reduction.

', whereit is aprime number > 3, defined also as the modulus of

Let's consider for example the field F29, it's elements will be
F29={0,1,2,...,28}
So we can define 4 basical arithmetic operations

. 17+28 = 8 which corresponds to 37 MOD 29 = 8 (Addition)

« 17-20 = 26 which corresponds to -3 MOD 29 = 26 (Subtraction)

« 17* 20 = 21 which corresponds to 340 MOD 29 = 21 (Multiplication)
« 177 (-1) = 12 which corresponds to (17*12) MOD 29 =1 (Inversion)

With this little example, we can see how arithmetic field operations basically work and we can also put
our attention to an important observation: the use of finite fieldsisthe principal method to reduce
computational complexity in terms of efficiency, indeed as you should have noticed the smple
properties inside an addition (17 + 28 = 8) could have enormous "potential” if used in cryptography!

file:///ICJ/ECC/StrongCrypto.html (6 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

-
[
-
=
o
T
.
(=]
-
=
i
<L
(=]
=3
wJ
=

INCREASING KEY LENGTH

file://IC{/ECC/StrongCrypto.html (7 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

z Z2+z 7"\3+z O
+7z
Z\2+z 7"\3+z Z\3+7\2
z+1
+1 +1 +7+1

Possible operations are:

(Z\3+2\2+1) + (z/2+z+]1) = Z\3+z

(Z\3+2\2+1) - (z*2+z+1) = Z*3+z (considr that in F2 (-1 = 1))

o (Z’3+Z22+1) * (z2M2+z+]1) = 22+ 1 s0 (Z*3+2\2+1) * (2M2+z+1) =2"5+z+ 1 FOLLOWS (25
+z+ 1) MOD (zM4+z+1) = Z"2+1

(2\3+ "2+ D)\(-1) = 2*2 ovvero (' 3+ 2\2+1) * "2 MOD (z*4+z+1) = 1

The second member of MOD (z*4+z+1) corresponds to f(z)=z"4+z+1

Generalized Discrete Logarithm Problem

Let's now study the Discrete Logarothm: we will also see a practical application of Group Theory. In
each system based upon the DL we can find some Paremeters of Public Domain (p, g and) wherepisa
common prime number, g adivisor (also prime) of p-1, g have arange[1, p-1] and Order g, SO we can
say that t = g isthe smallest value that verifies the following relation:

g”~t=1(mod p)

Now you should see this by other points of view :), indeed if we make some assumptions we can
redefine the entire encryption process of DL! suppose indeed that (G,*) isacyclic multiplicative group
of order n that has a generator g, we can "include" the entire algorithm DL into the same G!!. If we
consider that Public Domain Parameters are g and n, automatically the private key is an integer X,
randomly chosen into the range [1,n-1] given by:

y= o'

The problem to determine x, given g,n and y is defined as Discrete L ogarithm Problem (DLP) in G,
and aDL system based on G *should* be untractable but there are some conditions that make it's
efficiency attackable. Every two Cyclic Groups of the same order n, these can be considered operatively
as the same groups. In other words, we have two identical boxes with a different (((contents))), as
immediate effect we can represent the same object in different forms, as computational consequence we
will obtain for each representation different efficiency curves (velocity), independantly from DL or DLP.

file:///ICJ/ECC/StrongCrypto.html (8 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file://IC{/ECC/StrongCrypto.html (9 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes
g
I, Fy

r,y € F, F, x I,

da” + 276 £ 0

F,

P

(Va—17 < |E(Fy)| < (Vg +1)°

E(F,) P,Q,R < E(F,)

file://IC{/ECC/StrongCrypto.html (10 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file://IC{/ECC/StrongCrypto.html (11 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file://IC{/ECC/StrongCrypto.html (12 of 29)7/31/2007 9:35:26 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file:///CJ/ECC/StrongCrypto.html (13 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file://IC{/ECC/StrongCrypto.html (14 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file:///CJ/ECC/StrongCrypto.html (15 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file:///CJ/ECC/StrongCrypto.html (16 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

Fundamental Featuresof EC, and pratical ECC generation

T
Order of the Group: Considering the curve E]F*? ' , thanks to the Hasse Theorem over Elliptic
Curves we can know the number of points of E included O, here the fundamental relation of Hasse:

tE(F,) —p— 1| < 24/p
Computationally, thisis resumed into the Schoff algorithm known also as SEA (Schoof-Elkies-Atkin).

The knowledge of the number of points of E isfundamental for cryptography, in terms of
implementability and of security, consider indeed a sum P+P+P+... sufficiently big, and remember that
we're working on Finite Fields, easly we can reach the point O and thisis NOT a good thing, because:

a*P = b*P for some a, b with b > a this demostrates the existence of c*P = O wherec=b-a!!!
ECC Generation

Thisis nothing more than the Order of the Group, that as you should understand CAN divide the order
of the group itself! So it's truly important to generate an ECC with a precise order, and we can do this by
using Schoof algorithm (in the previous example obviously this algorithm is used indirectly ;)) or with
more complex algorithms, as Complex Multiplication or the more immediate Theorem of Well,
instead if we're working on Hardware devices we can use the systems of Point Counting as AGM
(Arithmetic Geometric Mean) and SST (Satoh-Skjernaa-Taguchi) that are the most performant at
spreading especially over Binary Fields.

Other important conditions for agood ECC isthe MOV Condition (M enezes Okamoto e Vanstone),
without this you can amost reduce the complexity in alogarithmic form! :)

MOV Condition: Suppose we have an ECC over GF(q) and a point fixed in F, firstly we check that the
first T terms of the sequence (g, 2, g"3...,q"T) are different from 1 mod Prime_Order of F. T usually
Is chosen as

T = log2(q)/8
For the entire attack procedure, you can search on CACR website.

Also remember that afield of g e ements should have an order different from g or we will have an
Anomalous Elliptic Curve, and that's truly insecure!.

Elliptic Curves Cryptographic Applications

file:///ICJ/ECC/StrongCrypto.html (17 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes
And now finally we reached the pratical and most interesing part, what could be the uses of our ECC:

. Usesdtrictly crypographycal
. Integer Factorization
. Primality Proving

The fundamental assumpion of EC Cryptography is, how readapt a certain algorithm based over group
theory with groups based EC Theory. Here some of the most common ECC Algorithms:

. ECDSA

. ECDH Elliptic Curve Diffie-Hellman
. ECMQV basato su MQV

. ECIES

. EC-KDSA

Basic ECC Architecture Consider ations

Every implementation of EC applied on crypto algorithms has a basic architecture common to all
algorithms, the fundamendal structure isthe Domain Parameter s procedure.

Domain Parameters: This structure defines the elliptic curve E in function of the Field a Basic Point G
and the Order n of thefield.

Usually ispointed out as: D = (q,FR, S,a,b, P,n,h)

« Qtheorder of the Field chosen

|
. FR(Field Representation) denotes the representation used for the elements of F‘?

« S(Seed) inthe case the EC needs a PRNG

. a,b the two coefficients of the defining equation

. Porg GistheBase Point or Generator (isacyclic SubGroup), to be cryptographically usable
the Order of G needs to be the lesser prime number not negative such that nG = O.

. nisthe order n of the Base Point

. histhe Cofactor

o p— [El
E(F,) I

Because 'h' isthe order of , for the Lagrange Theorem | , into cryptographycal

operation the cofactor needsto be /! == + and usually is used h = 1.

The Domain Parameters are the most vulnerable elements of an ECC, and are the first parameters that an

file:///ICJ/ECC/StrongCrypto.html (18 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

hypothetical attacker will go to check, it's important from the security point of view that Domain
Parameter respects the prescriptions of NI ST and SECG; the most classical attacks are the Pohlig-
Hellman and Pollard’ s rho, strictly dependent from the number of points of an elliptic curve.

Key Pairs. Arethe keys used into ECC, and are strictly related to Domain Parameters, the Public Key
Is chosen casually by selecting a point Q into the group <P> generated from the point P, while the
Private Key d is extracted from the following relation:

d=LOGp (G)
The dlliptic curve discrete logarithm problem and ECC Attacks

The intractability of the DLP is of fundamental importance for the security of every ECC algorithm. We
talked briefly about the fact that the problems connected to the DL P are the same for DLP over EC,
which is called ECDL P, and can be defined as:

[FP c FE(F,)

Given a curve E defined over — ¥ and a point £ of order n, and a point Q appartaining
to <P>, we haveto find the integer | included in therange[1,n-1] sothat Q = | P. Thisinteger i it's
indeed the Discrete Logarithm of Q in base P denoted | = LOGp (Q).

So you understand how important the chosen Domain Parameters are as necessity to resist against all
attacks based on ECDLP. The most known algorithm for ECDLP resolution is the Exhaustive Sear ch,
that computes the sequence of points P, 2P, 3P until Q isfound, the principal disavantage of this
algorithm is the low velocity, indeed the Running Time is approximately of n, so an n choised
sufficiently big it's a good countermeasure against this kind of attack. Other important attacks are Pohlig-
Hellman and Pollard’srho that have an Exponential Running Time, precisely of O(Sgrt(p)), wherepis
a prime number sufficiently big, to be protected against this attack is necessary to choose an n divisible
for p, such as step-Sgrt(p) which will be unusable cause the increase of computational time.

The basic mechanism of Pollard's Rho it's easy, we have to following random steps (better defined as
Random Walk) until ax, ay, bx ,by are found:

= ax*B+ bx*A== ay*B + by*A

= ax*I*A+ bx*A == ay*|*A + by*A
= (ax-ay)*I1* A== (by-bx)*A

= (ax-ay)*| == (by-bx) mod NP

= | == (by-bx)* (ax-ay)"(-1) mod NP

file:///ICJ/ECC/StrongCrypto.html (19 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file:///CJ/ECC/StrongCrypto.html (20 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file://IC{/ECC/StrongCrypto.html (21 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

Let's suppose that we aready know that our crackme is based on ECC, so first thing to focus is the Input
parameters that the algorithm will receive. We have 4 EditBoxes, Name and three containing serial
(probably the three parameter of every common ECC ;)).

We know also that the second fundamental step of every ECC, isthe Domain Parameter Generation
mracl *m p;

mp = mrsys(100, 10);

m p->1 OBASE=16; //The basis is switched to 16, Nane and Serial wll be in
the formO..9..A ..F

secpl60rl a=mrvar(0); //Coeff a

secpl6Orl b=mrvar(0); //Coeff b

secpl6Orl p=mrvar(0); //Base Point or Generator

secpl6Orl n=mrvar(0); //Order of the Base Poi nt

secpl60rl x=mrvar(0); //Coord x

secpl6Orl y=mrvar(0); //Coord vy

cinstr(secpl60Orl1 _a, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC') ;
cinstr(secpl6Orl1 b, "1CO97BEFC54BD7A8B65ACF89F81D4ADAADCS565FA45") ;
cinstr(secpl6Orl_p, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF") ;
cinstr(secpl60rl _n, "100000000000000000001F4C8F927AED3CA752257");
ci nstr(secpl60rl1_x, "4A96B5688EF573284664698968C38BB913CBFC82");

cinstr(secpl6Orl y, "23A628553168947D59DCC912042351377AC5FB32") ;

Asyou can see our D will be D(a,b,n,x,y), there is something different from the canonical D, does not
appear the coord x and y, but don't worry you 'll seein abit what this mean..now let's study the true core
algorithm:

unsi gned I ong | Nane, | SNX, | SNR, | SNS, snLSB, i, j ;

file:///ICJ/ECC/StrongCrypto.html (22 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file:///CJ/ECC/StrongCrypto.html (23 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

cinstr(s, szSNS); // s wll contain the third seri al

snLSB = remain(r, 2);

This easy piece of code produces two messages el and €2, using an hashing function H(). The function
remain() instead divides a big number with an integer (2 in our case), obtaining the Integer. Remember
the division r/2, necessary to give us the bits of the Point Compression.

i f ((conpare(r,secpl6Orl n)<0) && (conpare(s,secpl6Orl n)<0) && (epoint_set
(X, X, snLSB, pointH) == TRUE))

i f (point_at_infinity(pointH ==FALSE)
And now we landed on the first Signature Verification, the checked condition are three, if (r < n) and
(s<n) and if the point H finally pertain to the curve (LSB isreferred to the Point Compression resolution)

then the execution can continue;

First Check:

xgcd(s, secpl60rl n,s,s,s); // s = s”(-1) nod secpl60rl n (s can be the w of
the point 3 of SignVer proc ;))

mad(el, s, s, secpl60rl n,secpl60rl n,ul); // ul= s*el nod secpl60rl n
mad(r,s, s, secpl6Orl n, secpl60rl n,u2); // u2= s*r nod secpl60rl n

ecurve_nmult2(u2, pointH ul, pointGpointld); // J = ul*G + u2*H

This piece of code should sounds you familiar, indeed is the procedure of Signature Verification that we
have seen in the points 3 - 4 - 5, the only difficulty may bein the different letters used, but it's only
necessary abit of attention. The next control is again on the point H, that as you should understood
needs to be different from Infinity.

epoi nt _get(pointd,x,x); // x = J.x determ ne the x conponent of the point J
if ((conpare(x,z)!=0) && (conpare(x,r)==0))

it's foundamental that xJis equal between the two messages

Second Check:

mad(e2,s,s,5ecpl60rl n,secpl60rl n,ul); // ul= s*e2 mod secpl6Orl n

file:///ICJ/ECC/StrongCrypto.html (24 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes
mad(r,s,s,secpl60rl n,secpl60rl n,u2); // u2= s*r mod secpl60rl n
ecurve_mult2(u2,pointH,ul,pointG,pointJ); / J= ul*G + u2*H
The second check is again performed over H, and finally is again founded xJ
if ((conpare(x,z)!=0) && (conpare(x,r)==0))

If also this check is passed the Signature is Correct!

Finally we arein front of a Signature Verification based on ECDSA, our task isto find a Signature(r,s)
and the Private Key (called in this case x) for the two messages €1, e2 that have two hashes of 160 bits.

In conclusion we find ourselves of with one Signature Verification based on ECDSA, therefore to find
one Signature (r, s) and the private key (called in this case x) for two messages €1, €2 having two hashes
of 160 hits.

There are two checks: one for each message but computationally are equals for both messages, we can
indeed see that the kernel of our check isthe point J:

J=Uul*G+ u2*H =

= WFe*G + WHTFH =

= (We+ wr*d)*G

Wherew=s\(-1) modnand H = d*G

The Jisequal to the aready known X used in the canonical scheme:
X = ulP +u2Q

And finally we discover that G and H are the famous P and Q)

Asyou can see, the true control isindeed to verify the abscisses of the obtained points, that need to be
identical for the two messages, may look a complicated but remember the basic concept of ECC
Everything isa Point!

J(X, y) and it's projecion J(x, -y) have indeed the same X, so let's build the Resolving Equation:

file:///ICJ/ECC/StrongCrypto.html (25 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file:///CJ/ECC/StrongCrypto.html (26 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

file://IC//ECC/StrongCrypto.html (27 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

[...]
004013FD push ebp
004013FE push edi

004013FF call powrod ; 27AB8CB1F847BBBC412CAA33"B nod
C3CEABO6781ECF3B69EA2103

[...]
00401426 push edx
00401427 push eax

00401428 call _conpare ; Pownod == 4A2BEE4544261D982D959675

The algorithm generates a BigNumber B that contains the length of Serial and as usual executes a
Powmod 27AB8CB1F847BBBC412CAA33"B mod C3CEABO06781ECF3B69EA 2103 and next step
IS the comparison with 4A2BEE4544261D982D 959675, what we can do in this case?....Polhig-Hellman..
no..it's not necessary B is a BigNumber, but it's dimension istruly little (it expresses only the lenght of
the Serial) and consequently B can be founded with a basical Bruteforce.

After obtaining A and B, two BigNums X1 and X2 are generated, and next by using the curve y*2 = x"3
+ X into the field F(ACCO0CFQ775153B19E037CE879D332BB) and with A e B, are determined:

P=X1*A+ X2*B

c=X2-Px

next by checking that ¢ beginswith "TMG-" and finally by jointing ¢ with Name we will have our serial:
For the resolution X1 and X2 are arbitrarly choised:

P=X1*A+ X2*B

X2'=c+ PX

It's now necessary to find X1' to satisfy the following X1*A + X2*B == X1'A + X2'*B the equivalence
criteriais based on the concept that we have to obtain the same abiscis of P, and also that A and B are of
the same order, so we have to compute | so that I* A = B, in other words we have to solve the ECDLP.
With Schoof we can aso know that the Curve have ACCO0CF0775153B19E037CE879D332BC points

file:///ICJ/ECC/StrongCrypto.html (28 of 29)7/31/2007 9:35:27 PM

Reverse Engineering of Strong CryptoSignatures Schemes

and consequently thanksto L agrange Theorem we have the order of A and B, as:

566006783BA8SA9DESCFO01BE 743CE9995E =
2*3*7*D*D* 7F*D3* 1DF 75*5978F* 1F374C4 7* 5F /3FD8D3

..and as afairy tale the good old Pohlig Hellman will guide us :P, it's hint isto compute the ECDLP as F
(2), F(3), F(7), F(D"2), F(7F), F(D3), F(1DF75), F(1F374CA47), F(5F73FD8D3) which is better than
computing the entire BigNumber.

fonded | = 1212121255555ABCDEFABCDEF9999999 follows that:

X2*A+ X1*B== X2A+ X1*B =

= X2*I*B + X1*B == X2*|*B + X1*B

= X2*I*B + X1*B == X2*|*B + X1*B

= X2*| + X1 == X2*| + X1' mod NP

ed infine..

X1'= X2*] + X1 - X2'*| mod NP

Note finali

A big regard to al UIC: Quequero, AndreaGeddon, LonelyWolf, Alfa62, ZaiRoN, LittleLuk, RET:
Devine9, Black-eye, BigS, Aimless, Haldir, *"Daemon” and last but not least my Cattina® ") for all
others not mentioned here..sorry :)

Disclaimer

Noi reversiamo al solo scopo informativo e di miglioramento del linguaggio Assembly.

file:///ICJ/ECC/StrongCrypto.html (29 of 29)7/31/2007 9:35:27 PM

	Local Disk
	Reverse Engineering of Strong CryptoSignatures Schemes

